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An Unsteady Long Bearing Squeeze Film Damper Model
Part I1: Statically Eccentric Operation
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ABSTRACT

This paper, the second of a two-part series, presents results of an unsteady
rotordynamic analysis of a long-bearing squeeze film damper executing orbits about
an off center position using a fluid circuit approach. A series of nodes and branches
represent the geometry of the flow circuit. The mass and momentum conservation
equations are solved to predict the pressure distribution in the squeeze film. The
motion of the bearing is simulated by the variation of geometry within the flow path.
This effort represents the first modeling approach which allows for an arbitrary orbit

size about an arbitrary position.

Nomenclature

C  Squeeze film damper radial clearance (difference in radii)
= umR¥C? Pressure conversion factor
C, =-f/e Dimensionless direct damping coefficient

d  Damper journal diameter



[ ]

D, =f/e Dimensionless direct inertia coefficient
e Dynamic eccentricity (orbit radius)

L  Damper journal length

m  Mass flow rate

p  Local pressure within the squeeze film region
T Radial coordinate

R Damper journal radius

Re = pwC?¥u Reynolds number

z Axial coordinate

¢  =e/C Eccentricity ratio (dimensionless orbit radius)
0 Circumferential coordinate

i Fluid absolute viscosity

p  Fluid density

1  Shear stress

®  Frequency of damper journal (whirl frequency)

Introduction

In the first paper (Part I), all models considered a circular centered orbit, i.e. the orbit
of the bearing about the center of the housing. Steady state methods have been used
to predict the squeeze film forces to varying degrees of success for these circular

centered orbits. Once the center of the orbit is eccentric (the center of the bearing



-
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orbit is about some point other than the center of the housing) an unsteady solution is
required for all but extremely small orbit size cases since no coordinate
transformation can result in a constant geometry for this situation. An unsteady
model of the damper was therefore needed. The first paper in this two part series
(Part I) developed the basis for the unsteady solution and benchmarked the technique
against published experimental results’. This paper presents the results of a modeling
effort for eccentric operation of a squeeze film damper executing a large orbit (Figure
1 illustrates schematically the eccentric operation of a squeeze film damper). These
results are the first available for this situation, either analytical or experimental, and

represent a significant improvement in the state-of-the-art.

Fluid Flow Code

A general purpose, one-dimensional, network flow analysis computer code was
chosen as the platform for SFD modeling”®. The code uses a series of nodes and
branches to define a flow network. Nodes are positions within the network where
fluid properties (pressure, density, etc.) are either known or calculated. Branches are
the portions of the flow network where flow conditions (geometry, flow rate, etc.) are
known or calculated. The code uses a finite volume approach with a staggered grid.
This approach is commonly used in computational fluid dynamics schemes
(Patankar"’, Patankar and Karki'®). The staggered grid approach uses overlapping
control volumes where the conservation of mass and the conservation of momentum

are calculated in separate control volumes. For a conventional grid where only one



control volume is used for both scalar and vector quantities, interpolation is required
in formulating the conservation of the scalar quantities at the edges of the control
volume and numerical errors result. For a staggered grid, however, mass flow rates
are available at the surface of the continuity control volume and do not have to be

interpolated.
Unsteady Long Bearing Squeeze Film Damper Modeling

The geometry of the damper is assumed to be that of the circular centered orbit
benchmark case given by Jung, ef al’>. The inner race of the bearing has a radius of
2.5 inches, is 0.94 inches long, has a clearance of 0.0625 inches and is fully sealed on
one end, mostly sealed on the other end. As in the first paper of this series (Part I),
the bearing remains wrapped (see Figure 2); however, curvature is neglected since the
clearance to radius ratio is small (~1/40). The motion of the inner race of the damper
is simulated by the variation of the geometry of the flow path, as is illustrated in
Figure 3. This geometry variation generates a pressure variation around the
circumference of the damper. For rotordynamics applications, the pressure
distribution of the fluid circuit model is integrated to obtain the radial and tangential

forces of Equations 1 and 2.

2n
1::r = J.O pAnormal Cosede (1)
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In a dimensionless form, the radial and tangential forces are calculated using

Equations 3 and 4, where Cp is the pressure coefficient defined in the nomenclature.

2
_ p
f = J-O —p cos9do 3)

2n
- P
fl = J.O 'C—p‘Sln 06do6 4

In rotordynamic models, these force components are represented by rotordynamic
coefficients. These coefficients are analogous to the mass, damping and stiffness
terms for a spring-mass-damper system. For an uncavitated squeeze film damper, the
only two coefficients which occur are a radial inertia (or added mass) term, D_, and a
circumferential damping term, C,. In order to compare with published experimental
results’, the damping and inertia coefficients are normalized by the eccentricity ratio
and pressure coefficient, equations 5 and 6. Equation 5 is the non-dimensional
circumferential damping coefficient and Equation 6 is the non-dimensional radial

inertia coefficient.

C=-fi/e ®)



D, =f/e (6)

Results

Initial Eccentric Squeeze Film Damper Model

The initial eccentric SFD model uses an orbit eccentricity ratio of ¢ = 0.4 about an
off-center position described by a “static” eccentricity ratio of ¢, = 0.4. Figure 3
illustrates the clearance versus node number for four positions within the orbit
(corresponding to ot = 0 & 2n, 7/2, ©t, and 37/2 radians). The pressure has been non-

dimensionalized using equation 16 for comparison with Jung’s published data.

p p P
" = 11
P reference CP Re pR2 W 2 ( )

Pressure results are provided in Figure 4. As the pressure wave propagates it also
deforms in contrast to the centered case (Part I, Figure 4). Since the pressure wave
deforms, the radial and tangential forces are functions of position in the orbit (i.e. the
coefficients are periodic functions of time). This leads to rotordynamic system
modeling questions beyond the scope of this work, such as: Should time averaged
coefficients be used when encountering eccentric operation, or should the coefficients
be modeled as periodic in time? Do time dependent rotordynamic coefficients make
sense, or do time dependent radial and tangential forces make more sense? It is the

opinion of this author that until rotordynamic system level codes are modified to



handle modeling periodic forces at squeeze film damper locations, time averaged
coefficients should be used with the understanding that these values represent only the
mean value. Once the rotordynamic codes have been modified, the actual periodic
force components should then be used.

Figure 5 shows the difference in the dimensionless pressure profiles between the
centered and eccentric operation at the position in the orbit of the eccentric case
where absolute minimum clearance is attained. The velocity of the damper inner
segment between the two cases is dramatically different (the damper inner segment
velocity for the statically eccentric case is less than 50% of velocity for the centered
case). This velocity difference is reflected in their respective dimensionless pressure
magnitudes. Note that the absolute minimum clearances between these two cases
differ slightly (the centered case has a minimum clearance of 0.01125 inches whereas

the eccentric case has an absolute minimum clearance of 0.0125 inches).

Eccentric Operation Parametric Studies

Upon the success of the initial eccentric model, a parametric study was conducted on
the predicted SFD performance. The study examined the variation in both orbit size
and static eccentricity for Reynolds number of 49.0. The dynamic eccentricity ratios
(84 dimensionless orbit size) examined in the study ranged from 0.2 to 0.4. The static
eccentricity ratios, €, examined in the study ranged from 0.2 to 0.6. (Refer to Figure

Sb as reference to statically eccentric operation).



The results of the study are provided in Figures 6 through 13. Figures 6 and 7
provide the results for a dynamic eccentricity ratio of 40% (g4 = 0.4) for two static
eccentricity ratios (g, = 0.2 and ¢, = 0.4). These figures show the effect of static offset
on the results for a moderate orbit size. As these two figures indicate, as the static
eccentricity increased the forces on the rotor increase and the force profile becomes
asymmetric. These observations are not unexpected as the influence of the housing
increases as the static eccentricity increases. One other notable observation is that the
radial (inertia) force component is larger than the tangential (damping) force

component.

Figures 8 and 9 show the effect of orbit size for a small static offset. The static
eccentricity is at 20% (g, = 0.2) and the orbit size ranges from 20% - 60% (¢, = 0.2 -
0.6). These figures show that an increase in the orbit size results in an increase in the
force components. Note that as the orbit size decreases, the effect of the small static

offset diminishes and the force components are nearly constant over one period.

Figures 10 and 11 show the effect of orbit size for a moderate static offset. The static
eccentricity is at 40% (g, = 0.4) and the orbit size ranges from 20% - 40% (e, = 0.2 -
0.4). Note that unlike the small static offset case, the effect of the moderate static
offset does not diminish to the point where the force components are nearly constant

over one period (as orbit size decreases).



One final parametric study was conducted to examine the effect of Reynolds number
on eccentric behavior. The study used a single static eccentricity and dynamic
eccentricity. The eccentricities were both set at 40% (e, =€4=0.4). The results of the
study are presented in Figures 12 and 13. The predictions indicate that the Reynolds
number has a major influence on the radial force (inertia force), but a lesser influence
on the tangential force (damping force). This may indicate that for a moderately
offset condition, damping is controlled more by the offset than by the operating

speed; whereas inertia is still controlled by fluid inertia.

Conclusions

This study successfully demonstrates unsteady modeling of orbits about a statically
eccentric position. The results not only provide proof of concept for such predictions
(only an unsteady model can provide such predictions), they also provide insight into
the behavior of the pressure field for this mode of squeeze film damper operation.
Additionally, the results indicate that either mean values of the rotordynamic
coefficients are needed in current rotordynamic models or that rotordynamic models
will need to be modified (e.g., models must be able to handle either time

dependent/periodic coefficients or time dependent/periodic forces).



Two parametric studies were conducted on statically eccentric operation. The first
study examined the effect of static eccentricity for given orbit sizes at a Reynolds
number of 49. The results indicate that as the static eccentricity increases, the forces
over a period become asymmetric. For a small orbit size (g, ~ 0.2), the effect of static
offset diminishes and the force components are nearly constant over one period (i.c.
for a small static offset, say ¢, ~ 0.2, the effect of the offset becomes negligible);
however, for moderate orbit size (g, ~ 0.4), the effect of a small offset cannot be
neglected. For all cases examined in this study, the radial force (inertia force) was

always predicted to be greater than the tangential force (damping force).

A second parametric study examined the effect of Reynolds number on statically
eccentric operation. The static and dynamic eccentricities for the study were each set
at 40% (g, ~ 0.4 and g, ~ 0.4). The study indicated that the radial force (inertia force)
was highly sensitive to Reynolds number; however, the tangential force (damping
force) was not as sensitive. This may indicate that for a moderately offset condition,
damping is controlled more by the offset than by the operating speed; whereas inertia

is still controlled by fluid inertia.

In conclusion, it must be recognized that this study successfully demonstrated a
technique for modeling a squeeze film damper executing an arbitrary orbit radius
about an arbitrary position. In order to validate the predictions presented, an

experimental investigation is necessary.
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